
Weaver: A High-Performance, Transactional Graph Store Based on
Refinable Timestamps

Ayush Dubey, Gregory D. Hill, Robert Escriva, Emin Gün Sirer
dubey@cs.cornell.edu, greghill@stanford.edu, {escriva,egs}@cs.cornell.edu

Motivation
Large graphs are ubiquitous

Key challenge is strong consistency and high performance
for dynamic graphs

n1

n3

n5

n7

n6

n2
n4

A graph undergoing an update which creates link (n5, n7)
and an update which deletes (n3, n5), interleaved by a
concurrent traversal query starting at host n1. In absence of
strong guarantees, the query can return path (n1, n3, n5, n7)
which never existed at any instant.

Refinable Timestamps
Novel transaction ordering mechanism

I Parallel bank of gatekeepers assign a vector timestamp to each
incoming transaction to achieve coarse, partial order

I Fine-grained timeline oracle reactively resolves conflicts
between concurrent and conflicting transactions

I Establishing fine-grained order on-demand enables Weaver to
reduce unnecessary synchronization by not ordering
transactions that do not affect each other

Reduced coordination is critical for long-running graph
queries with large read set

Design and Implementation

Weaver provides ACID transactions on graphs

I Generalized transactions comprise read and write
operations to create, read, modify, and delete pre-specified
vertices and edges

I Node programs enable efficient execution of arbitrary
read-only transactions such as traversals

Weaver Architecture

Shard 1

Shard 2

Shard 3

Client

Client

Gatekeeper

Timeline Coordinator Shard Servers

Gatekeeper

Gatekeeper

Timeline Oracle

Client

Client

Tx Key-Value Store
(HyperDex Warp)

I Shard servers store in-memory, multi-versioned graph and
execute node programs

I HyperDex Warp stores the graph data for fault tolerance

I Gatekeepers timestamp each request and periodically
gossip their clocks amongst each other

I Shards dynamically migrate graph data across partitions to
balance load and reduce query processing overhead

Refinable timestamp based transaction ordering
mechanism presents a tradeoff between proactive
costs—timestamp gossip—and reactive costs—timeline
oracle

Scalability

High Scalability

0

100K

200K

300K

 1 2 3 4 5 6

P
e
a
k

T
h
ro

u
g

h
p

u
t

(t
x
/s

)

Number of gatekeeper servers

Twitter 2010 graph

Single vertex queries

I Weaver’s throughput scales linearly with additional gatekeeper
servers on Twitter graph with 41M nodes, 1.47B edges

Performance
High Throughput

 0

5K

10K

15K

20K

P
e
a
k

T
h
ro

u
g
h
p
u
t

(t
x
/s

)

LiveJournal graph

TAO workload

Titan
Weaver

I Refinable timestamps achieve higher throughput than
distributed locks due to higher concurrency and fewer aborts

Low Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

C
D

F

Latency (s)

Twitter (SNAP) graph

BFS traversals

Weaver
GraphLab (async)
GraphLab (sync)

I Refinable timestamps have low overhead, even compared to
state-of-the-art, in-memory, offline graph processing systems

